Characteristic and Ehrhart Polynomials

نویسندگان

  • Andreas Blass
  • Bruce E. Sagan
چکیده

Let A be a subspace arrangement and let (A; t) be the characteristic polynomial of its intersection lattice L(A). We show that if the subspaces in A are taken from L(Bn), where Bn is the type B Weyl arrangement, then (A; t) counts a certain set of lattice points. This is the only known combinatorial interpretation of this polynomial in the subspace case. One can use this result to study the partial factorization of (A; t) over the integers and the coe cients of its expansion in various bases for the polynomial ring R[t]. Next we prove that the characteristic polynomial of any Weyl hyperplane arrangement can be expressed in terms of an Ehrhart quasi-polynomial for its a ne Weyl chamber. Note that our rst result deals with all subspace arrangements embedded in Bn while the second deals with all nite Weyl groups but only their hyperplane arrangements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mochizuki’s indigenous bundles and Ehrhart polynomials

Mochizuki’s work on torally indigenous bundles [1] yields combinatorial identities by degenerating to different curves of the same genus. We rephrase these identities in combinatorial language and strengthen them, giving relations between Ehrhart quasi-polynomials of different polytopes. We then apply the theory of Ehrhart quasi-polynomials to conclude that the number of dormant torally indigen...

متن کامل

Contributions to the Theory of Ehrhart Polynomials

In this thesis, we study the Ehrhart polynomials of different polytopes. In the 1960's Eugene Ehrhart discovered that for any rational d-polytope P, the number of lattice points, i(P,m), in the mth dilated polytope mP is always a quasi-polynomial of degree d in m, whose period divides the least common multiple of the denominators of the coordinates of the vertices of P. In particular, if P is a...

متن کامل

Coefficients and Roots of Ehrhart Polynomials

The Ehrhart polynomial of a convex lattice polytope counts integer points in integral dilates of the polytope. We present new linear inequalities satisfied by the coefficients of Ehrhart polynomials and relate them to known inequalities. We also investigate the roots of Ehrhart polynomials. We prove that for fixed d, there exists a bounded region of C containing all roots of Ehrhart polynomials...

متن کامل

Roots of Ehrhart Polynomials and Symmetric Δ-vectors

Abstract. The conjecture on roots of Ehrhart polynomials, stated by Matsui et al. [15, Conjecture 4.10], says that all roots α of the Ehrhart polynomial of a Gorenstein Fano polytope of dimension d satisfy − d 2 ≤ Re(α) ≤ d 2 − 1. In this paper, we observe the behaviors of roots of SSNN polynomials which are a wider class of the polynomials containing all the Ehrhart polynomials of Gorenstein F...

متن کامل

q-analogues of Ehrhart polynomials

One considers weighted sums over points of lattice polytopes, where the weight of a point v is the monomial q for some linear form λ. One proposes a q-analogue of the classical theory of Ehrhart series and Ehrhart polynomials, including Ehrhart reciprocity and involving evaluation at the q-integers.

متن کامل

Ehrhart Polynomials of Matroid Polytopes and Polymatroids

We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that for fixed rank their Ehrhart polynomials are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995